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STREAMLINES IN A STEADY FLOW

Robert Legendre

ABSTRACT

The suthor states some tentative principles in the
absence of an existence theorem of sufficilently general so-
lutions of viscous fluid equations which could be applied by
engineers. '

These principles are used for the characterization of
the singular points of flow, which can be determined and
identified by experimental engineers to solve a problem of
fluid mechanics by a model.

Introduction

Theorems concerning the existence and uniqueness of solutions for the /3*
three-dimensional flow problems of fluid mechanics are few in number, especigily
for viscous fluids. The conditions that must be satisfied within the fluid and
with obstacles, so that there is a chance of insuring the existence and unique-
ness of a solution with physical significance, are not even universally accepted,
and serious mathematicians adopt rules for analyzing the local behavior which
appear highly questionable to this author.

An existence and uniqueness theorem is not sufficient in any case. If
there are no other methods for finding the solution, experimental results can
be profitably used by engineers.

Unfortunately, observation of flows is not always easy and accurate. The
effects caused by unavoidable turbulence, by vibrations at the obstacle, by
roughness, are certain to modify the processes. The engineer tries to draw from
the random variables, which are not useful in any way, a corresponding schematic
approach equivalent to a well-formulated mathematical problem, with initial and
boundary conditions simplified by eliminating the random variables.

*Numbers given in the margin indicate the pagination in the original foreign
text.




I. Preliminary Principles

Since rigorous proofs are not yet available, reasonable principles are usu-
ally postulated, which are heuristically justified by the effectiveness of the
predictions they establish.

A first principle, apparently universally admitted, is the following one:

The solution to the problem of viscous fluid flow, whose existence is ex-
- perimentally proved, satisfies the Navier-Stokes equation. It is analytic in-
side the fluid, even if the initial and boundary conditions are not analytic.
This means that components u, v, w, of the velocity, pressure P, specific mass
p and temperature T are all analytic functions of coordinates X, ¥y, Z2 and

time t.

The model sought by engineers can destroy this analytic quality at certain
points or even on certain lines of surfaces, but it continues to exist almost
everywhere. Singularities are nearly always sources of streamlines and, in
many practical problems, the streamline source is a single one, located at in-
finity. The solution is then analytic at any point at a finite distance inside
the fluid.

A second principle, apparently less universally admitted, concerns fluid
behavior near obstacles. The author prefers to restrict his statement by con-
sidering only obstacles which have an analytic definition almost everywhere.

The solution to viscous fluid flow is analytic in the neighborhood of any
analytic obstacle region (ref. 1).

The principle excludes the possibility of having velocity vary as a non-
integral power of the distance to the obstacles. This is, however, sometimes
used in certain local analyses and does not raise any contradiction. According
to this author's intuition it has, however, no application to the physical
problems of interest to engineers. It seems that in all cases where an exist-
ence and uniqueness theorem was established, the condition that the solution
satisfy these two statements was imposed. '

These two principles are not applied to perfect fluid flow; they are ac-
cessible, however, as limits to viscous fluid flows, when viscosity and con-

ductivity go to zero. The analytic quality exists in general inside the Z&

fluid, except on a few lines such as vortex axes of the ideal incompressible
fluids, or on a few surfaces such as vortex sheets and shock waves. The removal
of the adherence condition, which is implicitly assumed for viscous fluids in
the preceding sentences, upsets the conditions on the obstacles. The second
principle remains valid here at the 1limit by a sort of substitution of the ana-
lytic quality at the boundary layer edge by the analytic quality at the wall.

It is more difficult and unnecessary here to study the cases in which the spe-
cial surfaces inside the perfect fluid are analytic.

The consequences to the two postulated principles will be developed only

for steady flows. The engineer, for lack of better information, can apply the
results to the description of the average streamline of a turbulent flow.
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If the analytic quality of the solution to the viscous fluid equations is
questioned, we note that the character of equivalence to a linear representa-
tion is the only one used.

IT. Singular Flow Points

The streamlines of a flow are defined by the following differential
equations

These equations are well determined from the above principles, except at
the following locations

-- the points where the velocity V, or rather pV, is infinite; these points
are considered streamline sources; '

-- at infinity, if there exists a streamline source at infinity;

-- at the boundaries of the obstacle analytic domains;

-- at the special points where pu, pv and pw are simultaneously zero.

Only the neighborhood of these latter points will be considered, because
the principles cannot be used near other points. Although there is no need
here to have a complete discussion, which is the classic one of differential
equations, it is useful to recall the essential conclusions of such a discussion.

As soon as the analytic quality is found around a singular point, taken as
the origin, the streamlines are defined to within the second order by

dr _ dy _ dz
a4 Gy + @32 AT + QY + Az Gy + Ayl + 33

where the denominators represent the principal parts of the flux vector pv
components.

Degeneracy, which would bring the velocity to the second order, is not gen-
erally considered, because it can be studied as a consequence of merging of the
singular points in practical problems, which depend almost always on parameters
such as obstacle encounter. The adherence condition necessitates degeneracy
around a singular obstacle point. In order to avoid a special study, the ratio
of the velocity on the distance to the obstacle will be substituted for the
velocity, and this ratio is of the first order, except when there is a new
degeneracy.




The streamlines converging to a singular point are defined by

z - y -
Ay + @Y + a3 84T + agey - 03

-
&

T+ Ony + Az 8

where S is a solution of the equation

ay; —8 ays Gy
L1 ay—8 ay = 0,
ayy Gy a5 — 8

The system can put in the form, provided the three roots Sl, SE’ 83 are real

X _dY _ dz
8, X 8,Y 8%

where X, Y, Z are linear forms in x, y, z, whose coefficients are minors of the
determinant equation in S.

It is not possible to have all three roots of the same sign, because
otherwise all streamlines would go through the singular point and pV would be
infinite at this point (according to the law of continuity). This does not nec-
essarily mean that the existence of such a point in the flow must be eliminated;
instead, we have a singular point which is considered a streamline source.

It is possible to narrow this result by using the continuity equation of

fluid mechanices. We have, to within the second order

div (P_‘?) =0y + Gy + agy =8, + S + 8,

If there are no streamline sources, div pV = O and the sum of the roots of
the S equation is zero.

For a singular point on an obstacle we have

—

div (p-\7) = (a3 + @y + a5) d + pV. Dd

0

where d is the distance to the obstacle. .Since PV tends to be orthogonal to Bﬁ

the last term is of the second order, and the sum of the roots of the S equation
remains zero.




One of the three roots, S, for example, is therefore of different sign from

3

the other two. The streamlines form a node in the Z = O plane and saddle points
in the planes X = 0 and Y = 0. The streamlines are more generally defined by

A XY8 = B YVB: = C ZY&,

The projection of any streamline on the X = 0 plane, made parallel to the
Y = Z = 0 line, is a streamline of the X = O plane to within the second order.

If only one root S, is real, the other two Sl and 82 are mutually conju-
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gate, and so are the forms X and Y. The differential equations then are

dinZ _ dinP* _ do

S, T8 7§

for X = Peif and s. = gr + is".
17" 1

The streamlines are defined parametrically, always within the second order,
by

Z = 7, e®0" Pt = Pjemi0/8n

where tan 6 is the ratio of the two linear forms in x, y, z and P2 is a
quadratic form of these variables.

In the Z = O plane corresponding to Zl = Q the streamlines form a Zé

focus. The projection of any streamline on the Z = O plane, made parallel to
the real straight line X = Y = O is, to within the second order, a streamline
of the Z = O plane. TIn space this line winds into a spiral around the stream-
line surface in the shape of a tulip.

Tt is not necessary here to discuss the numerous cases of secondary de-
generacy when the components of pV remain of the first order, possibly after
dividing by the distance to an obstacle where the singular point is located.
It is important, however, to note that

-- S3’ Si cannot be of the same sign because all streamlines would converge
to the singular point where pV would be infinite. The continuity equation en-
tails that 83 + 2 Si = 03

-- if the two roots merge for special values of the problem parameters, an
isotropic node, or isotropic focus, appears in the Z = 0 plane as a common de-
generacy of the node and focus.




On the other hand, all regular streamline surfaces which go through the
singular point are tangent to one of the planes X = 0, Y=0o0r Z =0, and
where the S equation has a single real root, they are tangent to Z = O.

ITI. TFlow Around a Slender Ogive

The preceding conclusions permit us to interpret the experimental result
of Werlé (ref. 2), who used the same conclusions (ref. 3) regarding the flow
behavior around a slender ogive.

The surface of the obstacle is regular and, if there is a singular point
on it, the surface is tangent to one of the planes X = O, Y=0o0orZ =0 de-
fined in the preceding section. The existence of a singular point on this ob-

stacle 1s excluded if the scheme does not provide for a streamline source on it.

The wall streamlines connect singular points which are nodes or foeci. It is
useful to consider here that the two streamlines which go through a saddle
point do not terminate on this saddle point, but rather split and continue be-
yond. There are therefore at least two singular points of the node or focus
type, and the existence of saddle points augments the number of these points.

There is no need to attempt to clarify this discussion, for example, by
evoking the degeneracy of foei into centers, because it is generally impos-
sible to deduce a complete description of the wall streamlines from the experi-
mental results. The flow is a sufficiently unstable effect, downstream of the
obstacle, for the singular points in this region to be easily found and iden-
tified.

It is, however, important to give a good description of the streamlines
upstream of the obstacle.

There exists a streamline inside the fluid which ends at the upstream
stagnation point and which continues on the obstacle into an infinite number
of lines, which form a node, and cover the whole obstacle region in the viein-
ity of the stagnation point.

This last remark requires some comments, because there are several publi-
cations which state that the wall streamlines continue inside the fluid on a
surface. This error arises from an extrapolation of the facts observed in s
few simple cases provoking a degeneracy. In planar flows the streamline sur-
face made up by the cylindrical obstacle is, indeed, extended inside the fluid
by a surface. However, such degeneracies must be considered exceptional, and
it is practically impossible to have a resultant planar flow. A close exami-
nation shows that the line along which the obstacle cuts the streamline sur-
face, which should continue the same line into the fluid, is in reality a wall
streamline connecting the singular points distributed more or less at random,
because here we have an imperfect planar flow. There are then several lineg--
and not a surface--extending the obstacle inside the fluid. We shall prove
later that the obstacle is extended by a sheet in the vicinity of a saddle
point.




Following this digression it is necessary to analyze in more details the
flow around the stagnation point of a slender ogive located in an incoming
flow.

The plane Z = O is tangent to the obstacle at the stagnation point, plane
Y = 0 is the plane of symmetry of the flow and plane X = O is perpendicular to
plane Y = O, but is not generally perpendicular to plane Z = O.

The streamlines form a saddle point in plane Y = O and in plane Z = 0, and
this is fairly clearly shown by experiments, because the stagnation point is
sufficiently stable and the boundary layer in its vieinity is thin.

The wall streamlines starting from the stagnation point A divide into
three regions on either side of the symmetry plane Y = O (fig. 1). A first
region supplies a focus C, and is bounded by two special streamlines II and
ITI. The other two regions, on either side of the preceding one, contain
streamlines which go toward singular points downstream, which the experiments
of Werlé, mentioned above, could not locate or identify. They are bound by
lines II or IITI and lines I or IV of the plane of symmetry Y = O.

The vicinity of focus C is not easy to study, because the flow is not
perfectly stable and the boundary layer is thick. It is, however, perfectly
clear that the streamlines wind up in spirals around a special line inside the
liquid which may be called the axis of viscous eddies, or, more commonly, by
extrapolation from the term belonging to the perfect fluid, the axis of vortex.
Its tangent in C corresponds to the real straight line made by the intersection
of the two complex conjugates X = Y = 0 of the preceding section. This 1lin-
earization by a limited expansion produced a straight line as the special line.
This special curved line going through C extends the obstacle inside the fluid
and has properties which generalize those belonging to the straight line of
the preceding section.

The boundary wall lines II and IIT meet at a saddle point B and extend Zé
into two lines V and VI, one ending at C and the other one extending downstream.

The vicinity of saddle point B is particularly difficult to observe be-
cause not only is the saddle point imperfectly fixed and imbedded in a thick
boundary layer, but the velocity is of the second order in its vicinity. In

AN
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I
Figure 1. Wall flow on slender ogive.

7




addition, saddle point B is not very far from focus C. The following comments
are based more on the considerations of the preceding section than they are
deduced from the experiments. They could lead to more extended research which
could either prove or disprove them.

Since a saddle point is observed in B, in the plane Z = O tangent to the
obstacle, there must exist a saddle point and a node in the two planes X = O
and Y = 0, tangent respectively to lines II and III and lines V and VI. It
seems therefore that the node lies in this latter plane.

The streamlines inside the fluid go through the node and form a surface,
which contains in particular lines V and VI, and consequently the vortex axis
which goes through C. This surface was called the horn-type vortex sheet by
Maurice Roy, in spite of the fact that it becomes a vortex sheet only for van-
ishing viscosities. It is a streamline surface extending the obstacle inside
the fluid (fig. 2), or more exactly, extending the wall streamlines going
through the saddle point into the fluid.

We still have to describe the behavior of the flow downstream. The
streamlines originating from stagnation point A and directed downstream are de-
viated from lines I and IV of the plane of symmetry and come close to wall line
VI. The behavior is as if lines I and IV were directed toward a saddle point
and line VI toward a node. The Werlé experiments cited here were performed,
however, on fairly short truncated ogives. Previously, experiments performed
to verify the calculations of three-dimensional boundary layers by Eichelbrenner
indicated the shape described above for flows around ellipsoids, in spite of
the fact that the angle of attack was kept low in order not to have a focus. !

The streamlines depart from, or come close to, the boundary lines very
rapidly, and it is generally impossible to distinguish them from these bound-
aries all the way to the singular points. This has given rise to a minor
error, which consists of taking the envelope of the wall streamlines as a
boundary line. Another error, which is rather semantic, is to take the bound-
ary as an asymptotic line to the wall streamlines. When a singular point is
thrown to infinity, for example, on an infinite cylinder which is yawed, a
generatrix is effectively an asymptote to the wall streamlines.

1

Figure 2. Horn-type of vortex sheet.
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The shape of wall streamlines near a node permits us to estimate the
ratio between the two roots of the equation in S dealing with the plane tangent
to the obstacle. This observation shows that this ratio is generally very dif-
ferent from 1.

One last remark concerns the lack of correspondence between the boundary
lines and the streamlines isolated into nodes. The boundary wall streamlines
are those which go through the saddle points. When these lines come to nodes,
they generally have no relationship to the streamline isolated at this node--
which has a local property. In the case of the slender ogive studied here,
boundary lines IT and III are distinct from the isolated line, whose tangent
is perpendicular to the plane of symmetry and is osculating in the X = O plane.
Boundary lines I and IV which go through downstream saddle points are planar
by symmetry, in the special case, but this does not basically distinguish
them, for local analysis, from the neighboring lines.

This interpretation goes beyond the conclusions of Werlé, who is an ob-
jective and careful experimenter, but who refused to recognize formally the
model he was invited to prove or to disprove. We hope, however, that the
observation will be geared to ideas based on logical reasoning, starting from
preliminary but reasonable principles and going to usable empirical laws.

IV. Delta Wings

The effects present in the vicinity of delta wings, at angles of attack of
from 10 to 20°, are analogous to those described concerning the flow around an
ogive, provided that the leading edges and the apex are rounded.

Our interpretation is based on some unpublished results of Werlé con- ZZ
cerning the flow around a delta wing with elliptical cross sections. The model
was constructed for tests at low or zero angle of attack, to verify a pres-
sure calculation by Guiraud and a calculation of three-dimensional boundary
layers by Eichelbrenner. Some high angles of attack tests can be used for the
subject of the present report, but bear on the leeward behavior (fig. 3).

Since the wing is relatively thick, focus C is very far downstream from
saddle point B. The flow on the vortex sheet (1left of fig. 3) is, however,
difficult to distinguish. The flow near the trailing edge and in the down-
stream part of the leading edge is fuzzy and the lines shown in figure 3, which
lead to a node at the wing extremity, are hypothetical, broadly speaking, since
this extremity is singular. It is impossible to draw streamlines on the vortex
sheet downstream of the trailing edge.

When the radius of curvature of the leading edge and the rounding of the
apex are reduced, focus C, as is well known, and consequently saddle point B,
will come toward the apex and merge with it. At the same time the stagnation
point, located windward and not shown in figure 3, goes up toward the apex,
even in the case of subsonic flow, and practically merges with the apex.




Wall flow

Vortéx éheet

Figure 3. TFlow around a delta wing
of elliptical cross sections.

At the limit, for a plane delta wing (of negligible thickness) the flow is
almost conical near the apex (ref. 4), as proved experimentally by Werlé upon
request by the author (ref. 5). The streamline inside the fluid arrives at the
stagnation point and merges, even in subsonic flow, with a semi-infinite straight
line, whose inclination with the wing determines the angle of attack. This line
is extended by the wing and the vortex surfaces.

It should be noted that the vortex surfaces become complicated. As the
wing thickness diminishes, a second focus shows up among the wall streamlines,
far downstream from the first focus. It also tends toward the apex when the
thickness tends to zero. Experimental results for a precise description of in-
termediate phenomena are lacking, but the existence of secondary vortex sheets
for the thin wing is well known. The study of this behavior does not follow
directly the considerations of section I1I, since the limiting case considered
corresponds to a systematic degeneracy of the flow, which becomes two-
dimensional, and since the leading and trailing edges are sharp edges which are
singular on the surface. It is, however, easy (but will not be done here) to
deduce the properties of two-dimensional flows from the properties of three-
dimensional flows, or, more simply, to understand the limit behavior of the
flows studied above.

The outer wall streamlines (fig. 4) are distributed into four regions [@
on either side of the plane of symmetry. The boundary lines are simi-infinite
straight lines originating from the apex. Lines I, ITIT connect the saddle
points at the apex, generalized to obstacles having singular lines, to nodes
downstream. On the contrary, intermediate lines II and IV connect nodes at the
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apex to saddle points downstream. Line V is crossed by streamlines which ex-
tend onto the principal vortex sheet.

The inner wall lines, not shown in figure 4, are divided only into two
regions. Line VII connects a saddle point at the apex to a node downstream.
Line VI connects a node at the apex to a saddle point downstream.

Every boundary line belongs to a stream surface which extends the obstacle
inside the fluid.

Tn order to display the behavior of these surfaces better, we must use the
two-dimensional property of the flow by studying the traces drawn by the coni-
cal stream surfaces on a sphere centered on the apex. We must project the
sphere onto a plane tangent at a certain point, from the opposite point, which
can be chosen to be situated on the extension of the bisector inside the wing,
so that the trace drawn by the latter is a straight line.

For the case of subsonic flow--which alone is studied here--around the
wing at an angle of attack but with no yaw, all projections thus obtained
(fig. 5) originate from a node J, image of the upstream streamline inside the
fluid going through the apex. They divide into four regions on elther side of
the plane of symmetry. These regions are bounded by five boundary lines, two
of these regions being cut by the vortex surface projections.

The lines from the first region terminate at a node, trace of the wing
bisector, on the extrados side. The lines from the second region terminate at
a focus, trace of the secondary vortex axis. The lines from the third region
terminate at a focus, trace of the principal vortex axis. The lines from the
fourth region terminate at a.node, trace of the wing bisector on the intrados
side.

I
Vortex sheets and walls Wall flow

Figure 4. TFlow around thin delta wing.
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a. Large scale b. Detail near wing

Figure 5. Traces of the conical stream surfaces of the flow
around the delta wing.

Lines T and VII, traces of the plane of symmetry, are really not boundary
lines, because they do not go through a saddle point. They correspond to iso-
lated lines at nodes which, because of the symmetry, happen to have only local
significance. Lines II, IV, VI are boundary lines going through saddle points.
Lines IIT and V are traces of the horn-type vortex surfaces.

V. Blunt Ogives

The flow around blunt ogives of revolution already separates under zero
angle of attack. A separation bubble is formed, without having a streamline
coming from infinity entering it.

Werlé (ref. 2) has studied the flow around such ogives placed at a cer-
tain angle of attack. The bubble is swept by windward streamlines at the ogive.
It is cut there and takesthe form of a horseshoe whose two sides are directed
downstream. On the other hand, the bubble moves slightly forward (leeward),
while thickening.

The phenomena depend greatly on the shape of the ogive and are very com-
plicated. The observation is made most difficult by the relatively small thick-
ness of the separated domain, and interpretation is also difficult.

For the Rankine type of ogive (not too blunt, however), the author doubts
that the vortex line actually crosses the plane of symmetry, as the interpre-
tation of Werlé suggested. It seems more probable to the author that the
vortex axis is almost immediately broken when the angle of attack increases,

12




either windward or leeward, and that the two separated extremities come to stick
to the ogive at the foci. Two horn-type vortex sheets are formed, analo- Zg
gous to those observed on slender ogilves, but enclosed inside the separation
bubble.

The effects interpreted above are sketched in figure 6, without further
comment.

When the ogive is still less slender, for example, the hemispherocylin-
drical ogive, a secondary vortex shows up. In this case, the observations of
Werlé can be interpreted by means of a more complicated diagram (fig. T) (which
is rather hypothetical), which yields no additional information and will not
be discussed here. The wall leeward lines are the only ones shown on one side
only of the plane of symmetry. They follow the arrows indicated by Werlé.
However, the discipline chosen to draw the lines completely and to the singu-
lar points obliges us to extrapolate the results by induction. Even if this
process is imperfect, experiments guided by it can be undertaken. It is im-
probable that a more accurate description helps the mathematician to choose

Wall streamlines Iq'l ¥ -

Separation sheet
and vortex sheet

Figure 6. TFlow around Rankine ogive.
Yy, w
/) m

I

I

Figure 7. Wall flow on hemisphero-
cylindrical ogive.
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a set of starting assumptions that will enable him to atbtack the calculation of
the very complicated flow, briefly described here. There have been cases, how-
ever, for example, the theoretical work of Eichelbrenner on the three-dimensional
boundary layer, where the interpretation of the experiment, followed by com-
plete drawing of the streamlines, has furnished bases for a complete calcula-
tion, fashioned on these results, and have permitted us to predict the results

of experiments not yet undertaken.

VI. General Remarks

The comments of the preceding paragraphs have a fairly fragile mathemati-
cal basis. They are based only on considerations of continuity and regularity
of the solutions of the viscous fluid mechanics equations, which were imprac-
tical for use.

The incidental use of the continuity equation was not even indispensable.
It only narrowed down the relation between the roots of the equation in s and
was only slightly helpful in the identification of the flow.

The author considers, however, that the few results obtained can be of
use in efficient collaboration between experimentalists and theoreticians.

These results do not use complicated systems of equations. Nevertheless,
they are far from being obvious, as proved by the inaccuracies and errors con-
tained in a great number of published experimental and theoretical papers.
These inaccuracies and errors would not have occurred, had there been a com-
plete and coherent description of the flow.

In the complicated practical problems of interest to engineers it is
useless to regret that it is impossible to solve, and even to discuss, all of
the equations. Indeed, any useful information, even very fragmentary, is worth

. noting.

It is now necessary to see whether it is possible to proceed further with
these equations.

As soon as the streamlines are established, product pV on a surface going
through the streamline determines product pV on any other surface going through
the same streamlines. Nothing more should, therefore, be expected from the
continuity equation for the description of the streamlines than these conse-
quences of the convergence of all streamlines to a point. This entails an
infinity of pV, and consequently, by definition, the existence of a source of
streamlines.

The flow is practically defined when the streamlines are established and
PV is determined to within an arbitrary function of two variables, which de-
pends on the values it takes on a surface cutting the streamlines. If it is
an observed flow, the equations of fluid mechanics are automatically satis-
fied. This proves, however, that the data on the streamlines and on pV on the
cross-secting stream surface, cannot take any arbitrary value. Certain

14
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conditions must be imposed, for example, on the streamlines, which were not con-
sidered in the preceding analysis. It is useless to regret this neglect. On
the contrary, since we do not understand the whole process we should be pleased
that we are able to eliminate unacceptable conditions.

Since some authors cannot discuss the solutions to the equations and
simultaneously consider the boundary conditions, they perform a deeper local
analysis than the one we sketched, taking into account all equations. This pro-
cedure is not very useful and is even dubious, unless principles analogous to
those proposed are taken into account in order to replace an acceptable exist-
ence and uniqueness theorem.

et us examine in particular what can be added to the study in the vicinity
of a singular point for an incompressible fluid flow. The two equations that
must be satisfied are

divV=0 curl [V A curl V - VvAV] = O.

Tn the second equation, which is a vectorial one, AV is finite at the sin-
gular point and is written as a function of the coefficients of the second
order terms in the expansion of pV, taken here as V. This second equation does
not add any new information on the coefficients of the first order terms of the
pV expansion, except that, considered as functions of the dynamic viscosity v,
they must be such that curl [VA curl V] tends to zero with v.

At the limit, when v = 0, the two equations express the fact that either
curl V = O at the singular point or there exists a line going from the singu-
lar point in the direction of curl V, on which the velocity is of the second
order.

VII. Conclusions

The study of the vicinity to singular points where the velocity is zero
inside the fluid or on obstacles can be carried out starting from preliminary
principles in lieu of a precise existence and uniqueness theorem, not actually
available.

It leads to useful results, which are far from obvious and which permit
us to distinguish, to within degeneracies, two types of singular points: those
in the viecinity of which there exist three sets of approximately planar stream-
lines, which form one node and two saddle points, and those in the vieinity of
which there exists only one set of approximately planar streamlines, which
form a focus.

These results enable us to interpret the widely varied observations per-
formed on complicated flows.
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